Understanding decision-making during adolescence

Natasha Chaku, PhD Indiana University

Adolescence

Unique developmental period characterized by **risk**...

...and opportunity

Crone & Dahl, 2012

Puberty "rewires" the adolescent brain

And are generally associated with cognitive development, improvements in logical reasoning, and abstract thinking

Different parts of the brain "develop" at different rates

Developmental processes tend to occur in the brain from back-to-front

Specifically, the limbic system 'develops' before the prefrontal lobes

Dual systems hypotheses:

reward-processing cognitive control Strength This mismatch leads to risky behaviors Development

A more responsive, mature limbic system paired with a less mature prefrontal cortex creates a developmental mismatch

But is it true?

- Overall, evidence is limited/ inconsistent
- Adolescents have similar cognitive skills as adults
 If that's true, why are we calling to
 - → If that's true, why are we calling the prefrontal lobes "immature"?
- They also evaluate risks very similarly to adults
- But in real life, they tend to take more risks

But is it true?

- Overall, evidence is limited/ inconsistent
- Adolescents have similar cognitive skills as adults
 - → If that's true, why are we calling the prefrontal lobes "immature"
- They also evaluate risks very similarly to adults
- But in real life, they tend to take more risks

But is it true?

- Overall, evidence is limited/ inconsistent
- Adolescents have similar cognitive skills as adults
 - → If that's true, why are we calling the prefrontal lobes "immature"
- They also evaluate risks very similarly to adults
- But in real life, they tend to take more risks

Number of Risky Behaviors Among Adolescents

N = 10,591; analyses exclude cases with missing data on risk factors. Source: Youth Risk Behavior Surveillance System (YRBSS), 2011 Newer theories prioritize interconnections between brain regions and understanding contextual demands

Newer theories prioritize interconnections between brain regions and understanding contextual demands

For example...

For example...

Consider this task

- How can we decrease emotional arousal in this task?
- How can increase information?

Connecting the brain with behavior...

- Less reliance on frontal lobes
 - →Behaviour likely to be inconsistent
 - → Slower processing speeds and more variable
 - → Impulsivity, "gut" reactions
 - \rightarrow problems

ignoring distractions

Connecting the brain with behavior...

• Less efficient connections

 \rightarrow Worse at interpreting emotions

- → Less reliance on experience and memory in decision making
- → Are adaptable and capable of huge amount of learning

Connecting the brain with behavior...

- Sensitized to certain neurotransmitters:
 - \rightarrow moody
 - \rightarrow less attentive
 - → ineffective problem solving
 - \rightarrow more risky behaviors

Implications?

- Increasing family, social, and community support can minimize psychosocial stress during adolescents
- Adolescents learn better when responding to rewards rather than through punishment (or removal of rewards).
- Adolescents benefit from safe places to take risks

Questions?

Thank You!

Dr. Adriene Beltz

Zhuoran Zhang

Dominic Kelly

Ran Yan

Dr. Alex Weigard Dr

Dr. Nestor Lopez-Duran

Our Promise to Youth

As well as the M(SD) lab and our participants!